D2C - Designed to Customer The guiding principle of Designed to Customer is the recipe for success behind REICH. In addition to the catalogue products, we supply our customers with couplings developed to their specific requirements. The designs are mainly based on modular components to provide effective and efficient customer solutions. The special nature of our close cooperation with our partners ranges from; consulting, development, design, manufacture and integration to existing environments, to customer-specific production, logistics concepts and after-sales service - worldwide. This customer-oriented concept applies to both standard products and production in small batch sizes. The company policy at REICH embraces, first and foremost, principles such as customer satisfaction, flexibility, quality, prompt delivery and adaptability to the requirements of our customers. REICH supplies not only a coupling, but a solution: Designed to Customer – SIMPLY **POWERFUL.** ## **Coupling Information** - 04 General Technical Description - 05 Advantages and Uses - **06** Standard Types - 08 General Technical Data - **12** Materials - 13 Selection of the Coupling Size - 20 Permissible Shaft Displacement - **21** Data Required for Coupling Size Selection ### **Dimension Tables** - 14 Type iTOK...F2K - 16 Type iTOK...D F2K - 18 Type iTOK...R TK ## General Technical Description #### **iTOK** # Highly flexible industrial couplings for flexibly mounted engines The highly flexible iTOK coupling has been specially designed for applications requiring extremely low torsional stiffness. Furthermore it is particularly well suited to the compensation of axial and radial displacements of flexibly mounted engines. The wide range of flexible coupling elements and adaptive designs provides standard solutions for a wide variety of different tasks. These can be complemented by specific customised designs on request (D2C). The flexible element is designed to combine high torque transmission capacity and high displacement capacity with high speed capability. Its rigidity can be adapted to requirements by selecting different rubber qualities. The adaptive designs are based on the standard flywheel adapter dimensions according to SAE J 620. The iTOK coupling series comprises coupling sizes for a torque range from 600 Nm to 60 000 Nm. The extremely low torsional stiffness allows for a safe and over critical layout of the coupling. During start and stop operations, the resonance range is passed through quickly, and excellent decoupling between the combustion engine and the driven machine is achieved over the entire operating speed range. The iTOK coupling enables direct connection between the engine and the driven machine and is capable of compensating for misalignments resulting from the flexible mounting without requiring any additional components. Most versions even allow for radial disassembly. Restoring forces remain within the permissible limits despite good displacement capability, with a significant reduction in assembly effort and smooth running of the drive (noise reduction). The iTOK couplings comply with ATEX explosion protection. They are certified according to Directive 2014/34/EU and may be used in explosive environments (categories 2 + 3). ATEX documentation to supplement the operating instructions is available on request. # **iTOK** Nominal torques from 600 Nm to 60 000 Nm ## **iTOK** ## Advantages and Uses #### Key features and benefits of the iTOK coupling: | → | Highly flexible transmission element with high torsional elasticity with different shore hardnesses | Optimal torsional vibration tuning with shifting of
resonances into non-critical operating ranges. Preserves
your drive train | |----------|--|---| | → | High torsional vibration and shock load damping capability | → Drive train protection for lower lifecycle costs (LCC) | | → | Compensation of misalignments and easy positioning of the drive and drive train possible | → Little assembly effort Cost savings due to fast work processing | | → | Direct connection to flywheels according to customer specifications Ready-to-install custom solution | → Easier installation Fewer components
Low investment costs | | → | Diverse designs achievable with modular construction | → Large field of application Custom-fit and cost-effective solution | | → | Compensation of axial, radial and angular displacements | → Your system achieves a high level of operational stability
with reduced loads, thereby increasing your productivity. | | → | Radial (dis)assembly of the coupling element | → Short installation and repair times resulting in high economic efficiency | | → | Maintenance-free | → Little effort during the period of use
You have fewer downtimes. Less maintenance for optimised
operating costs | | → | Extended range of application due to Atex certification in accordance with Directive 2014/34/EU (Ex) | Use also possible in explosive atmosphere with corresponding
safety requirements | ## Standard Types #### Flange coupling for radial element change Type iTOK...F2K allows the detached element to be replaced without moving the coupled machines, provided that the shaft of the driven machine does not protrude from the coupling hub. ◆ Advantage: possible to change element without having to move the coupled machines! #### Flange coupling for radial element change In type iTOK...D F2K, two coupling elements acting in parallel are used. It is therefore designed for the transmission of higher torques. This type enables the flexible coupling elements to be replaced without moving the coupled machines. Advantage: possible to change elements without having to move the coupled machines! High torque transmission capacity in the most confined spaces. #### Shaft coupling for radial element change The iTOK...R TK design uses two coupling elements acting in series. This provides increased coupling flexibility. This type enables the flexible coupling elements to be replaced without moving the coupled machines. Advantage: high coupling elasticity. possible to change elements without having to move the coupled machines! # Flange coupling with hub and two coupling elements operating in parallel. Type iTOK...D F2 Type iTOK...F2 # **Shaft coupling** with two coupling elements acting in parallel, separable flange, spacer ring and two hubs. # with two coupling elements acting in series, separable flange, spacer ring, adapter and hub. Flange coupling Type iTOK...R F2K vith separable flange #### Flange coupling with two coupling elements acting in series, union flange, spacer ring, adapter and hub. # **ITOK**General Technical Data | Coupling size | Element
version | Nominal
torque | Maximum
torque | Continuous
fatigue
torque | Power
loss | Dynamic
torsional
rigidity | Axial rigidity | Radial
rigidity | Angular
rigidity | Flange
size
SAE J 620 | Max.
speed | |---------------|----------------------|-------------------|----------------------------|---------------------------------|-------------------------------|--|------------------------------|--|------------------------------|-----------------------------|--| | | | T _{KN} | T _{K max}
[Nm] | T _{KW (10 Hz)} [Nm] | P _{KV (30°C)}
[W] | C _{T dyn}
[Nm/rad] | C _a | C _r | C _w | | n _{max}
[min ⁻¹] | | iTOK 600 | HN
WN
NN
SN | 600 | 1500 | 200 | 68
73
79
67 | 1170
1640
2540
3600 | 180
250
380
540 | 618
869
1350
1910 | 11
16
24
34 | 8 | 7800 | | iTOK 1000 | HN
WN
NN
SN | 1000 | 2500 | 330 | 121
130
139
118 | 1800
2520
3900
5500 | 180
260
400
560 | 639
897
1390
1970 | 16
23
36
50 | 10 | 6 400 | | iTOK 1600 | HN
WN
NN
SN | 1600 | 4000 | 530 | 139
149
160
136 | 4000
5700
8800
12400 | 290
400
620
880 | 989
1390
2160
3050 | 38
54
83
118 | 11,5 | 5700 | | iTOK 2300 | HN
WN
NN
SN | 2300 | 5750 | 770 | 214
228
245
208 | 5500
7800
12100
17100 | 360
510
790
1120 | 1300
1820
2820
3990 | 55
78
121
171 | 11,5 | 5400 | | iTOK 3500 | HN
WN
NN
SN | 3500 | 8750 | 1200 | 370
393
424
360 | 7800
11000
17000
24000 | 280
400
610
870 | 942
1330
2050
2900 | 69
97
150
212 | 14 | 4100 | | iTOK 5000 | HN
WN
NN
SN | 5 000 | 12500 | 1700 | 550
590
634
537 | 10 500
14 700
22 800
32 300 | 410
570
880
1250 | 1410
1980
3060
4340 | 102
143
221
313 | 14 | 4100 | | iTOK 6500 | HN
WN
NN
SN | 6500 | 16 250 | 2200 | 541
576
622
527 | 17 900
25 200
38 900
55 100 | 630
890
1380
1950 | 2280
3200
4960
7020 | 184
258
399
565 | 14 | 4100 | | iTOK 9000 | HN
WN
NN
SN | 9 000 | 22500 | 3000 | 621
663
714
605 | 29 000
40 700
63 000
89 200 | 660
930
1440
2040 | 2320
3250
5040
7130 | 281
394
610
864 | 18 | 3400 | | TOK 12500 | HN
WN
NN
SN | 12500 | 31250 | 4200 | 875
933
1010
854 | 40 300
56 700
87 700
124 000 | 990
1390
2150
3050 | 3660
5140
7960
11300 | 436
612
947
1350 | 18 | 3400 | | TOK 18000 | HN
WN
NN
SN | 18 000 | 45 000 | 6000 | 1350
1440
1550
1320 | 53 400
75 000
116 000
164 000 | 850
1190
1840
2610 | 3 000
4 210
6 520
9 230 | 527
741
1150
1630 | 21 | 2800 | | TOK 24000 | HN
WN
NN
SN | 24 000 | 60 000 | 8000 | 1310
1390
1500
1270 | 98 000
138 000
213 000
302 000 | 1600
2250
3490
4940 | 5 9 5 0
8 3 7 0
1 3 0 0 0
1 8 4 0 0 | 1090
1520
2360
3330 | 21 | 2800 | | TOK 30000 | HN
WN
NN
SN | 30 000 | 75 000 | 10 000 | 1540
1640
1770
1500 | 130 000
183 000
283 000
401 000 | 1900
2670
4130
5850 | 7120
10100
15500
22000 | 1460
2050
3180
4490 | 24 | 2600 | #### D F2K standard version with 2 elements switched in parallel in natural/synthetic caoutchouc | Coupling size | Element
version | Nominal
torque | Maximum
torque | Continuous
fatigue
torque | Power loss | Dynamic
torsional
rigidity | Axial rigidity | Radial
rigidity | Angular rigidity | Flange
size
SAE J 620 | Max.
speed | |---------------|----------------------|-------------------|--------------------|---------------------------------|------------------------------|--|-------------------------------|--------------------------------------|----------------------------------|-----------------------------|----------------------| | | | T _{KN} | T _{K max} | T _{KW (10 Hz)} | P _{KV (30°C)} | C _{T dyn} | Ca | C _r | C _w | | n _{max} | | | | [Nm] | [Nm] | [Nm] | [W] | [Nm/rad] | [N/ mm] | [N/ mm] | [Nm/°] | | [min ⁻¹] | | iTOK 9000 D | HN
WN
NN
SN | 18 000 | 45 000 | 6 000 | 1242
1326
1428
1210 | 58 000
81 400
126 000
178 400 | 1320
1860
2880
4080 | 4640
6500
10080
14260 | 743
1050
1620
2290 | 18 | 3400 | | iTOK 12500 D | HN
WN
NN
SN | 25 000 | 62500 | 8300 | 1750
1866
2020
1708 | 80 600
113 400
175 400
248 000 | 1980
2780
4300
6100 | 7320
10280
15920
22600 | 1410
1990
3070
4350 | 18 | 2950 | | iTOK 18000 D | HN
WN
NN
SN | 36 000 | 90 000 | 12000 | 2700
2880
3100
2640 | 106 800
150 000
232 000
328 000 | 1700
2380
3680
5220 | 6 000
8 420
13 040
18 460 | 1500
2110
3260
4610 | 21 | 2500 | | iTOK 24000 D | HN
WN
NN
SN | 48 000 | 120 000 | 16 000 | 2620
2780
3000
2540 | 196 000
276 000
426 000
604 000 | 3200
4500
6980
9880 | 11 900
16 740
26 000
36 800 | 3 210
4 510
6 980
9 890 | 24 | 2350 | | iTOK 30000 D | HN
WN
NN
SN | 60 000 | 150 000 | 20 000 | 3080
3280
3540
3000 | 260 000
366 000
566 000
802 000 | 3800
5340
8260
11700 | 14240
20200
31000
44000 | 4370
6140
9510
13500 | 24 | 2300 | | R TK standard version with 2 elements switched in series in natural/synthetic caoutchouc | | | | | | | | | | | | | |--|----------------------|-------------------|--------------------|---------------------------|------------------------------|--|-----------------------------|------------------------------|-----------------------------|-----------------------------|----------------------|--| | Coupling size | Element
version | Nominal
torque | Maximum
torque | Continuous fatigue torque | Power
loss | Dynamic
torsional
rigidity | Axial
rigidity | Radial
rigidity | Angular
rigidity | Flange
size
SAE J 620 | Max.
speed | | | | | T _{KN} | T _{K max} | T _{KW (10 Hz)} | P _{KV} (30°C) | C _{T dyn} | C _a | C _r | C _w | | n _{max} | | | | | [Nm] | [Nm] | [Nm] | [W] | [Nm/rad] | [N/
mm] | [N/
mm] | [Nm/°] | | [min ⁻¹] | | | iTOK 600 R | HN
WN
NN
SN | 600 | 1500 | 200 | 136
146
158
134 | 585
820
1270
1800 | 90
125
190
270 | 177
249
385
545 | 6
8
12
17 | 8 | 7800 | | | iTOK 1000 R | HN
WN
NN
SN | 1000 | 2500 | 330 | 242
260
278
236 | 900
1260
1950
2750 | 90
130
200
280 | 178
250
386
547 | 8
12
18
25 | 10 | 6400 | | | iTOK 1600 R | HN
WN
NN
SN | 1600 | 4000 | 530 | 278
298
320
272 | 2 000
2 850
4 400
6 200 | 145
200
310
440 | 352
494
765
1090 | 19
27
42
59 | 11,5 | 5700 | | | iTOK 2300 R | HN
WN
NN
SN | 2300 | 5750 | 770 | 428
456
490
416 | 2750
3900
6050
8550 | 180
255
395
560 | 399
561
868
1230 | 28
39
60
85 | 11,5 | 5000 | | | iTOK 3500 R | HN
WN
NN
SN | 3500 | 8750 | 1200 | 740
786
848
720 | 3 900
5 500
8 500
12 000 | 140
200
305
435 | 353
495
766
1090 | 34
48
75
106 | 14 | 4100 | | | iTOK 5000 R | HN
WN
NN
SN | 5 000 | 12500 | 1700 | 1100
1180
1268
1074 | 5 250
7 350
11 400
16 150 | 205
285
440
625 | 438
616
953
1350 | 51
71
111
157 | 14 | 4100 | | | iTOK 6500 R | HN
WN
NN
SN | 6500 | 16 250 | 2200 | 1082
1152
1244
1054 | 8 950
12 600
19 450
27 550 | 315
445
690
975 | 765
1080
1670
2360 | 92
129
200
283 | 14 | 4100 | | | iTOK 9000 R | HN
WN
NN
SN | 9000 | 22500 | 3000 | 1242
1326
1428
1210 | 14500
20350
31500
44600 | 330
465
720
1020 | 873
1230
1900
2690 | 141
197
305
432 | 18 | 3400 | | | iTOK 12500 R | HN
WN
NN
SN | 12500 | 31250 | 4200 | 1750
1866
2020
1708 | 20150
28350
43850
62000 | 495
695
1075
1525 | 1130
1590
2460
3480 | 218
306
474
671 | 18 | 3400 | | | iTOK 18000 R | HN
WN
NN
SN | 18 000 | 45 000 | 6 0 0 0 | 2700
2880
3100
2640 | 26700
37500
58000
82000 | 425
595
920
1305 | 1060
1490
2300
3260 | 264
371
574
812 | 21 | 2500 | | | iTOK 24000 R | HN
WN
NN
SN | 24 000 | 60 000 | 8 000 | 2620
2780
3000
2540 | 49 000
69 000
106 500
151 000 | 800
1125
1745
2470 | 2010
2820
4360
6180 | 541
760
1180
1670 | 21 | 2500 | | | iTOK 30000 R | HN
WN
NN
SN | 30 000 | 75 000 | 10 000 | 3080
3280
3540
3000 | 65 000
91 500
141 500
200 500 | 950
1335
2065
2925 | 2380
3340
5170
7320 | 729
1030
1590
2250 | 24 | 2300 | | #### Shore hardness Sh A and relative damping Ψ | Element version | Sh A | Ψ | |-----------------|------|-----| | HN | 48 | 0.4 | | WN | 56 | 0.6 | | NN | 66 | 1.0 | | SN | 74 | 1.2 | i Due to the physical properties of the rubber material, the measurable rubber hardness is subject to a variation that is defined as ± 5° Shore A according to DIN 53505. However, this variation is minimised by our own rubber production. #### **General Technical Information** The technical data applies only to the complete coupling or the corresponding coupling elements. It is the customer/user's responsibility to ensure that there are no inadmissible loads acting on any of the components. In particular, existing connections, e.g. bolted connections, must be checked with regard to the torques to be transmitted. If necessary, further measures, such as additional reinforcement with pins, may be necessary. It is the customer/user's responsibility to make sure the dimensioning of the shaft and keyed or other connection, e.g. shrinking or clamping connection, is correct. All components that can rust are protected against corrosion as standard. REICH have an extensive range of couplings and coupling systems to cover nearly every drive configuration. Customised solutions can be developed and manufactured even in small batches or as prototypes. In addition calculation programs are available for all necessary dimensioning. #### Flange The flange is used for the connection between the outer ring of the coupling element and the coupling hub. For this purpose there are corresponding bores on the circumference of the coupling flange as well as on the inner diameter. There are also large ventilation holes in the flange. The flange is made of steel, aluminium or cast iron, depending on the coupling size. #### Adapter flange: The adapter flange is made of steel, aluminium or cast iron and is used to connect the coupling element to the drive. #### **Coupling element:** The highly flexible coupling element consists of an inner sleeve, elastomer body and outer ring; the connection is designed as an elastomer-metal connection. In many applications the outer ring is designed as an SAE connection; other connections can be implemented with an adapter flange. The outer ring and inner sleeve are made of steel, aluminium or cast iron. The flexible part consists of natural or synthetic rubber, depending on the application temperature. #### **Coupling hub:** The coupling hub is usually made of steel. The coupling hub can be supplied undrilled, pre-drilled or with finished bores and keyways upon the customer's request. It is mounted on the shaft of the driven machine where it is fastened into position. For this purpose, there may be a set screw or threaded bores for an end plate. The coupling hub is screwed together with a coupling element or a flange. Complete couplings come with matching bolts which are included in the scope of supply. #### Union flange: The union flange connects the coupling element to the coupling hub and is used for radial disassembly of the coupling element without moving the two connected units. It is mounted together with the coupling hub and consists of steel, aluminium or cast iron, depending on the coupling size. #### Split spacer ring: The split spacer ring enables radial disassembly of the coupling without having to move the two connected units. It is installed using 2 assembly screws. | Material Overview | | | | |--|---------------------|--------|------------| | Rubber mixture | Ambient temperature | Colour | Identifier | | Natural / synthetic caoutchouc, standard version | -40 °C to +80 °C | black | N | | Natural/synthetic caoutchouc in temperature-resistant design | -25°°C to +100°°C | black | Т | | Synthetic caoutchouc in temperature-resistant design*) | -25 °C to +120 °C | black | Y | *) technical data on request ### Selection of the Coupling Size The coupling size, for use in combustion engines, is designed and selected with a view to torsional vibration. A general safety factor of S = 1.3 to 1.5 is to be applied for iTOK couplings for a preliminary design according to the engine torque $T_{\mbox{\footnotesize{AN}}}.$ The coupling size selection is to be verified for the permissible coupling load by a torsional vibration calculation conducted by us on request. When using an iTOK coupling in drives with large torque absorption fluctuations of the driven machine, an additional safety factor is to be applied. Take care not to operate the system constantly at resonance frequency in order to avoid damage to the coupling and the aggregates. Further information on torsional vibration analysis and the operation of highly flexible TOK couplings is available on request. #### In selecting the coupling size, the following must be observed: ■ The nominal torque of the coupling T_{KN} must be taken into account at every temperature and operating load of the coupling while observing the service factors S (e.g. temperature factor S_t) must be at least equal to the maximum nominal torque on the drive side T_{AN}; the temperature in the immediate vicinity of the coupling must be taken into account. $$T_{KN} \ge T_{AN} \cdot S_t$$ The nominal torque on the drive side T_{AN} is calculated with the driving power P_{AN} and the coupling speed n_{AN} . \blacksquare The **temperature factor S_t** allows for the decreasing load capacity of the coupling when affected by elevated ambient temperatures in the vicinity of the coupling. In this connection $S_t =$ S_{t1} is valid for standard version and $S_t = S_{t2}$ for silicone version. $$T_{AN} [Nm] = 9550 \frac{P_{AN} [kW]}{n_{AN} [min^{-1}]}$$ Temperature t 60 °C 70 °C 80 °C >80 °C 1.25 1.6 On request 同 The **maximum torque capacity of the coupling, T_{K max}** must be at least equal to the highest torque T_{\max} encountered in operation while taking the temperature factor S_t into account. A continuous torsional vibration analysis to verify the coupling selection must confirm that the permissible continuous fatigue $torque T_{KW}$ is at least equal to the highest fatigue torque T_{W} under reversing stresses encountered throughout the operating speed range while taking into account the temperature and frequency. $$T_{KW (10 \text{ Hz})} \ge T_W \cdot S_t \cdot S_f$$ ☐ The **frequency factor S_f** allows for the frequency dependence of the permissible continuous fatigue torque under reversing stresses $T_{KW (10 \text{ Hz})}$ with an operating frequency f_x . $$S_f = \sqrt{\frac{f_x}{10}}$$ # **ITOK** Type iTOK...F2K #### **Coupling details** | | Flange connection for SAE J 620 | | | | | | | | | | | | | | | | | |---------------|---------------------------------|----------------|----------------|----------------|----|----------------|------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------------|-------------------------|---------------| | Coupling size | SAE | D ₁ | D ₂ | D ₃ | Z | D _A | D _{max} | D ₄ | L ₁ | L ₂ | L ₃ | L ₄ | L ₅ | L _F | J ₁ outer | J ₂
inner | Total
mass | | | Size | [mm] | [mm] | [mm] | | [mm] [kgm ²] | [kgm ²] | [kg] | | iTOK 600 | 8 | 263.5 | 244.5 | 10.5 | 8 | - | - | - | _ | - | - | - | - | - | - | - | - | | iTOK 1000 | 10 | 314.3 | 295.3 | 10.5 | 8 | 317 | 55 | 82 | 67 | 15 | 8 | 68 | 40 | 173 | 0,038 | 0,018 | 8.3 | | iTOK 1600 | 11,5 | 352.4 | 333.4 | 10.5 | 8 | 355 | 75 | 112 | 95 | 16 | 9 | 66 | 40 | 199 | 0.064 | 0.045 | 14.1 | | iT0K 2300 | 11,5 | 352.4 | 333.4 | 10.5 | 8 | 355 | 85 | 120 | 95 | 17 | 9 | 84 | 40 | 217 | 0.073 | 0.069 | 16.6 | | iTOK 3500 | 14 | 466.7 | 438.2 | 13 | 8 | 466,7 | 110 | 159 | 120 | 20 | 20 | 82,5 | 25 | 225 | 0.22 | 0.186 | 28.3 | | iTOK 5000 | 14 | 466.7 | 438.2 | 13 | 8 | 466,7 | 110 | 159 | 120 | 20 | 20 | 109 | 25 | 251 | 0.275 | 0.207 | 31.2 | | iTOK 6500 | 14 | 466.7 | 438.2 | 13 | 16 | 466,7 | 130 | 185 | 120 | 20 | 20 | 101 | 25 | 244 | 0.255 | 0.327 | 36.2 | | iTOK 9000 | 18 | 571.5 | 542.9 | 17 | 12 | 575 | 160 | 230 | 200 | 20 | 9 | 102 | 20 | 317 | 0.589 | 0.851 | 65.5 | | iTOK 12500 | 18 | 571.5 | 542.9 | 17 | 12 | 575 | 160 | 230 | 200 | 20 | 9 | 137 | 20 | 352 | 0.728 | 0.972 | 72.3 | | iTOK 18000 | 21 | 673.1 | 641.4 | 17 | 12 | 678 | 165 | 240 | 200 | 24 | 9 | 138 | 25 | 358 | 1.440 | 1.560 | 89.7 | | iTOK 24000 | 21 | 673.1 | 641.4 | 17 | 12 | 678 | 200 | 300 | 250 | 24 | 9 | 149 | 25 | 419 | 1.540 | 3.200 | 145.6 | | iTOK 30000 | 24 | 733.4 | 692.2 | 21 | 12 | - | - | - | _ | - | _ | _ | _ | _ | _ | - | - | | Order exa | ample iTOKF2K | | | | | |---------------|---|------|--|--|---| | Coupling size | Element version
according to "General
Technical Data" | Туре | Flange connection size acc. to SAE J 620 | Mounting
length L _F
in mm | Mounting length of split spacer ring ZS $\rm L_{\rm 5}$ | | iT0K9000 | .WN. | F2K. | 18. | 317 | ZS20 | Coupling designation: iTOK9000 .WN. F2K. 18. 317 ZS20 # **ITOK** Type iTOK...D F2K #### **Coupling details** | | Flai | nge conn | ection fo | r SAE J 6 | 20 | | | | | | | | | | | | | |---------------|------------------|----------------|----------------|----------------|----|----------------|------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-------------------------|-------------------------|---------------| | Coupling size | SAE | D ₁ | D ₂ | D ₃ | Z | D _A | D _{max} | D ₄ | L ₁ | L ₂ | L ₃ | L ₄ | L ₅ | L _F | J ₁
outer | J ₂
inner | Total
mass | | | Size | [mm] | [mm] | [mm] | | [mm] [kgm ²] | [kgm ²] | [kg] | | iTOK 9000 D | 18 | 571.5 | 542.9 | 17 | 12 | 581 | 160 | 230 | 200 | 120 | 9 | 202 | 20 | 417 | 4.040 | 1.590 | 150.0 | | iTOK 12500 D | 18 | 571.5 | 542.9 | 17 | 24 | 581 | 160 | 230 | 200 | 154 | 9 | 271 | 20 | 486 | 5.660 | 1.900 | 184.5 | | iTOK 18000 D | 21 | 673.1 | 641.4 | 17 | 24 | 685 | 165 | 240 | 200 | 159 | 9 | 273 | 25 | 493 | 9.590 | 3.210 | 233.0 | | iTOK 24000 D | 21 ¹⁾ | 673.1 | 641.4 | 17 | 24 | 685 | 200 | 300 | 250 | 170 | 9 | 295 | 25 | 565 | 10.450 | 6.190 | 365.8 | | iTOK 30000 D | - | - | - | - | _ | - | - | - | - | - | - | - | - | - | - | - | - | 1) Different flange and length dimensions on request | ₹ / | Order examp | le iTOKD F2K | | | | | |------------|-------------|---|------|--|---|--| | Coup | ling size | Element version
according to "General
Technical Data" | Туре | Flange connection size acc. to SAE J 620 | Mounting length
L _F in mm | Mounting length of split spacer ring ZS L_5 | | iTOK | 9000D | .WN. | F2K. | 18. | 417 | ZS20 | Coupling designation: iTOK9000D .WN. F2K. 18. 417 ZS20 # **ITOK** Type iTOK...R TK | Coupling do | Coupling details | | | | | | | | | | | | | | | |---------------|---------------------|---------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-------------------------|-------------------------|-------------------------|---------------| | Coupling size | D ₁ max. | D ₂ max. | D ₃ | D ₄ | D _A | L ₁ | L ₂ | L ₃ | L ₄ | L ₅ | L _W | J ₁
outer | J ₂
inner | J ₃
outer | Total
mass | | | [mm] [kgm ²] | [kgm ²] | [kgm ²] | [kg] | | iTOK 600 R | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | iTOK 1000 R | 55 | 55 | 82 | 82 | 318 | 67 | 67 | 65 | 173 | 15 | 318 | 0.131 | 0.021 | 0.129 | 26.1 | | iTOK 1600 R | 75 | 75 | 112 | 112 | 358 | 95 | 95 | 93 | 176 | 15 | 377 | 0.247 | 0.047 | 0.242 | 41.3 | | iTOK 2300 R | 85 | 85 | 120 | 120 | 358 | 95 | 95 | 93 | 222 | 20 | 428 | 0.292 | 0.072 | 0.285 | 49.1 | | iTOK 3500 R | 110 | 110 | 159 | 159 | 472 | 120 | 120 | 117.5 | 225 | 25 | 485 | 1.002 | 0.217 | 1.002 | 99.6 | | iTOK 5000 R | 110 | 110 | 159 | 159 | 472 | 120 | 120 | 117 | 278 | 25 | 537 | 1.060 | 0.230 | 1.080 | 105.6 | | iTOK 6500 R | 130 | 130 | 185 | 185 | 472 | 120 | 120 | 118 | 262 | 25 | 523 | 1.090 | 0.340 | 1.180 | 113.9 | | iTOK 9000 R | 160 | 160 | 230 | 230 | 576 | 200 | 200 | 195 | 274 | 20 | 684 | 2.780 | 0.760 | 2.870 | 197.3 | | iTOK 12500 R | 160 | 160 | 230 | 230 | 576 | 200 | 200 | 195 | 344 | 20 | 754 | 2.940 | 0.970 | 3.020 | 210.3 | | iTOK 18000 R | 165 | 165 | 240 | 240 | 680 | 200 | 200 | 195 | 340 | 25 | 755 | 5.060 | 1.960 | 5.180 | 267.0 | | iTOK 24000 R | 200 | 200 | 300 | 300 | 680 | 250 | 250 | 245 | 368 | 25 | 883 | 6.470 | 2.990 | 6.940 | 384 | | iTOK 30000 R | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | ₹ | Order example iT | OKR TK | | | | |----------|------------------|--|------|--------------------------------------|--| | Couplin | ng size | Element version according to
"General Technical Data" | Туре | Mounting length L _F in mm | Mounting length of split spacer ring ZS L_5 | | iT0K90 | 100R | .WN. | TK. | 684 | ZS20 | Coupling designation: iTOK9000R .WN. TK. 684 ZS20 ## Permissible shaft displacement The permissibility of major shaft displacements depends on a number of factors such as coupling size, shore hardness of the element, operating speed and torque load of the coupling. The reference values listed below refer to an operating speed of \approx 1 500 min⁻¹. Precise alignment prevents premature wear of the rubber element. Observe the operating instructions. | Technical specifications | | | | | | | | | | | | | | | |---|-----------------|------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|---------------|---------------|---------------| | Coupling size | | | iTOK
600 | iTOK
1000 | iTOK
1600 | iTOK
2300 | iTOK
3500 | iTOK
5000 | iTOK
6500 | iTOK
9000 | iTOK
12500 | iTOK
18000 | iTOK
24000 | iTOK
30000 | | Max. permissible axial displacement *) | ΔKa | [mm] | ±4.5 | ±5.5 | ±5 | ±5.5 | +8 | ±8 | ±6.5 | ±6.5 | ±6.5 | ±9 | ±6 | ±6 | | Max. permissible radial displacement*) | ΔK _r | [mm] | 1.6 | 2.1 | 1.8 | 2.0 | 3.0 | 3.1 | 2.4 | 2.6 | 2.4 | 3.3 | 2.3 | 2.1 | | Max. permissible angular displacement*) | α | [°] | 3.0° | 3.3° | 2.3° | 2.4° | 2.8° | 2.8° | 2.1° | 1.6° | 1.3° | 1.6° | 1.1° | 1.0° | - i *) The values given apply to the iTOK...F2K and iTOK...D F2K types in rubber type WN for speed 1500 min⁻¹. For type iTOK...R TK double displacements apply. Recommended: for mounting, align to max. 20% Δ K for each direction of displacement. Values for other rubber types are available on request. - 🕦 Larger displacements of short duration, as may occur when starting and stopping the diesel engine, are permissible. These maximum displacements must not occur simultaneously. The maximum permissible displacements cannot be combined with torsional ## Data required for coupling size selection | Ge | eneral | | | | | | | | |----|--|---|--|----------------------|--|--|--|--| | 1. | Project: | | | | | | | | | 2. | Application (combined heat and power unit, emergency power generator, fire pump,): | | | | | | | | | 3. | 3. Operating mode (continuous operation, emergency power operation,): | | | | | | | | | 4. | Place of operation/location: | Ambient temperature: T _u | [°C] | | | | | | | 5. | Certification/class/requisite rules for selecting the coupling size: | | | | | | | | | | | | | | | | | | | En | gine side | | | | | | | | | 1. | Engine (manufacturer, designation/type): | | Diesel | Gas | | | | | | 2. | Engine power (nominal operation): P | | | [kW] | | | | | | 3. | Engine speed (nominal speed): n | | [min ⁻¹] | | | | | | | 4. | Idling speed available? yes no | | | | | | | | | | If adjustable from: n | [min ⁻¹] | to | [min ⁻¹] | | | | | | 5. | If variable speed operation, speed range from: n | [min ⁻¹] | to | [min ⁻¹] | | | | | | | Please attach corresponding speed/torque/power diagram. | | | | | | | | | 6. | Total stroke volume: V _H [ccm] R/V (angle): | | Number of cylinders: | | | | | | | 7. | Moments of inertia engine incl. damper without flywheel: | | J | - 0 - | | | | | | | Moments of inertia flywheel: | | J | - 0 - | | | | | | | Total moments of inertia of the engine (incl. damper, flywheel, etc.): | | J | [kgm ²] | | | | | | 0 | device addition | | | | | | | | | Ou | utput side | | | | | | | | | 1. | Type (generator, pump transfer case, pump, compressor,): | | | | | | | | | 2. | Type (manufacturer, designation): | | | | | | | | | 3. | Moments of inertia: | J | [kgm ²] | | | | | | | 4. | , | | | | | | | | | A | tricipated strait displacement | ns: System sketch with details of the individual in | ertias | | | | | | | ax | xial Ka [mm] | h details of the re | eference speed) and transmission ratios. | | | | | | | ra | adial Kr [mm] | | | | | | | | | ar | ngular Kw [°] | | | | | | | | | | | | | | | | | | If the prime mover is to be flange-mounted to the engine with an intermediate housing, we require the following to determine an optimum mounting position; specified details and dimensions as in the following sketch: ## Notes ITOK SIMPLY POWERFUL. #### **Industrial solutions:** Power generation Mobile applications Test benches PUMPS & COMPRESSORS Industry Marine engineering #### Headquarter: Dipl.-Ing. Herwarth Reich GmbH Vierhausstrasse 53 · 44807 Bochum, Germany +49 (0)234 959 16-0 🔞 www.reich-kupplungen.com #### Copyright ISO 16016 to be observed: The reproduction, distribution and utilisation of this document as well as the communication of its contents to others without explicit authorisation is prohibited. Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or design. © REICH - Dipl.- Ing. Herwarth Reich GmbH #### January 2023 edition The present ARCUSAFLEX® catalogue edition renders parts of the previous ARCUSAFLEX® catalogues obsolete. All dimensions are given in millimetres. We reserve the right to change dimensions and/or design without prior notice. Texts and illustrations, dimensional and performance data have been compiled with the utmost care. There is no guarantee, however, that the information is accurate; in particular, there is no guarantee that products will match the illustrations in terms of technology, colour, shape and configuration or that the products will correspond to the proportions of the illustrations. We also reserve the right to make changes due to printing errors or mistakes.