

R-FLEX COUPLINGS

All steel disc couplings

www.reichusa.com

D2C – DESIGNED TO CUSTOMER

Customized products to meet your needs.

In addition to our catalogue of products, we design and develop specialized couplings to meet our customers' individual requirements. By using modular components, we offer a customized solution at the right price, delivered when you need it.

Engage with us at any stage of the product lifecycle. We are available for consultation, design, development, production, integration into existing applications, and after-sales service. We are experts in meeting customer requirements in all project sizes, from small batch prototyping to full scale production.

REICH not only supplies you with a coupling, but a solution. Talk to us, we will find a solution for your requirement.

R-FLEX COUPLINGS

TABLE OF CONTENTS

04	Introduction to R-Flex Couplings
05	R-Flex coupling sizing and selection
06	Six Bolt Coupling with dropout spacer
08	Eight Bolt Couplings: with spacers, reverse hub and spacer
14	General Assembly Instructions

Ask us about your API 610/671 or ATEX 2014//34/UE requirements. Our Six and Eight bolt couplings can be designed as Axial Limiters with Electrical insulation.

Because we are constantly improving our products, catalogue dimensions, features, and values may change without prior notice.

The **R-FLEX** coupling is an all metal, maintenance free coupling manufactured to the highest standards for applications requiring no backlash and high torsional stiffness.

R-FLEX COUPLINGS

Fig. 1 Single flex coupling without spacer

Fig. 2 Double flex coupling with spacer

R-FLEX COUPLINGS ADVANTAGES AND FEATURES

- ➡ Torsionally rigid and backlash-free torque transmission
- ➡ Low weight with high torque capacity
- High rotation speeds
- ➡ No maintenance or lubrication required
- Accommodate angular, axial and radial misalignments
- ➡ Operate at high and low temperatures
- ➡ Small reaction forces from shaft misalignment
- Possible to replace disc pack elements without displacement of coupled equipment
- ➡ Can be provided to meet API 610 and API 671 upon request
- ➡ Almost unlimited life and wear-free with proper shaft alignment

Con	Components											
(1)	Hub	Steel										
(2)	Disc Pack	Stainless Steel										
(3)	Bolts/Nuts	Alloy Steel										
(4)	Washers	Steel										
(5)	Center Spacer	Steel (Composite upon request)										

Fig. 3 Double flex with spacer coupling components

COUPLING SELECTION

The selection of the coupling size depends mainly upon the required torque transmission and the shaft size(s) of the coupled components. However, other application conditions like shaft misalignments, application speeds or shaft expansion must be taken into consideration as well. For any special applications, please consult with Reich USA Engineers.

When selecting a coupling type and size, make sure that under all operating conditions the coupling nominal torque capacity and speed range are not exceeded.

Calculate the driving torque (T_{AN}) to be transmitted 1. from:

 T_{AN} (lb-in) = 63,000 × $\frac{P(HP)}{RPM}$ or $T_{AN}(Nm) = 9550 \times \frac{P(kW)}{RPM}$

2. Determine the required coupling torque capacity (T_{KN}) by taking the proper service factor (S_m) into consideration in order to compensate for the operating characteristics of the driving and driven equipment. See Table 1.

 $T_{KN} \geq T_{AN} \times S_m$

- NOTE: R-FLEX couplings can transmit a peak torque of up to 1.5 X TKN for a short period of time without considering an additional service factor.
- 3. Check if selected coupling is suitable for speed, shaft sizes, shaft misalignment and peak torque requirements.

Table 1 Service factor (S_m)

EXAMPLE CALCULATION

An 115 HP (84.5 kw) electric motor is to drive a reciprocating compressor at 890 RPM. The motor shaft size is 3.5" (88.9 mm) and the compressor shaft is 3.0" (76.2 mm). Distance between shaft ends is approximately 5.25" (133.4 mm).

1. Driving torque
$$T_{AN} = 63,000 \times \frac{115}{890} = 8140$$
 lb-in

or $T_{AN} = 9550 \times \frac{84.5}{890} = 907 \text{ Nm}$

2. Required coupling torque capacity based on a service factor $S_m = 3.0$ from Table 1:

 $T_{KN} \ge 8140 \times 3.0 = 24,420 \text{ lb-in}$ $T_{KN} \ge 907 \times 3.0 = 2721 \text{ Nm}$

Selected coupling size: HNS 160-6-AH

 $T_{KN} = 24780 \text{ lb-in} \ge 26,545 \text{ lb-in}$ $T_{KN} = 2800 \text{ Nm} \ge 3000 \text{ Nm}$ or

3. This coupling will accommodate the 3.5" motor shaft and the 3.0" compressor shaft. The HNS series provides the required DBSE of 5.25" (133.4 mm).

SAFETY NOTICE

or

R-FLEX couplings are designed and manufactured to high standards and tolerances for reliable and safe operation. Any modifications not authorized by Reich USA that can compromise the working conditions of the couplings are not recommended. The couplings must only be used within the specified design limits to ensure their safe operation and long service life.

Load	Drivon Equipment	Driving Equipment				
LUau	Driven Equipment	Motor or Turbine	Reciprocating Engine			
Uniform	Centrifugal Pumps; Conveyors-Even Loaded; Alternators; Fans and Blowers-light duty; Generators- even loaded; Mixers-liquid	1.0	3.0			
Light Shock	Centrifugal Pumps; Generators-Pulsating Load; Grinders; Hydraulic Pumps; Machine Tools; Oscillating Pumps; Textile Machinery; Woodworking Machinery	1.5	3.0			
Medium Shock	Air Compressors-Multi-Cylinder; Cranes; Elevators; Hoists; Punch Presses; Reciprocating Pumps; Ship Drives	2.0	4.0			
Heavy Shock	Air Compressors-Single Cylinder; Dredges; Drilling Rigs; Mine Machinery; Rubber Mixers	3.0	5.0			

NOTE: The service factors listed are intended only as a general guide. If the working conditions (i.e. RPM, Power, starting frequency, temperature) change, then it may be necessary to change the coupling selection.

HNS-AH-6 DISC COUPLING

Technical Data

Size	Nominal Torque		Maximum Torque		Short To	: Circuit rque	A	Max Speed			
	Nm	lb-in	Nm	lb-in	Nm	lb-in	± mm	± in	mm	in	RPM
85-6	320	2830	480	4250	960	8500	2.0	0.079	0.49	0.019	22500
105-6	750	6640	1125	9960	2250	19910	2.4	0.094	0.60	0.024	18000
125-6	950	8410	1425	12610	2850	25220	3.2	0.126	0.60	0.023	15000
140-6	1600	14160	2400	21240	4800	42480	3.4	0.134	0.67	0.027	13500
160-6	2800	24780	4200	37170	8400	74350	3.8	0.150	0.82	0.032	12000
185-6	5500	48680	8250	73020	16500	146060	4.2	0.165	0.96	0.038	10000
205-6	6700	59300	10050	88950	20100	177900	4.8	0.189	1.01	0.040	9000

*Maximum angular misalignment = 0° 30'

Coupling Selection

6-BOLT COUPLING WITH DROPOUT SPACER

NOTES:

- 1) Weight, inertia, maximum speed are calculated with steel hubs, standard dimensions, with max bore "dmax", and hub maximum "M"
- 2) Torsional stiffness is given between hub flanges for standard dimensions (spacer, element blades, bolts, adaptors, etc.)

Other hub and length dimensions available upon request.

Dimensional Data

Size	D	L	d max	L1	S	L2	L3	Μ	Wt	Inertia	Torsional stiffness
0120	In [mm]	Lb [kg]	Lb-in ² [kg-m ²]	Lb-in/rad *10 ⁶ [Nm/rad *10 ⁶]							
85-6	3.35	5.91	1.65	1.57	0.33	2.76	1.14	2.32	6.0	8.658	1.648
	[85]	[150]	[42]	[40]	[8.5]	[70]	[29]	[59]	[2.7]	[0.0025]	[0.1862]
105-6	4.13	6.89	2.17	1.77	0.35	3.35	1.46	3.11	11.3	25.77	3.531
	[105]	[175]	[55]	[45]	[9.0]	[85]	[37]	[79]	[5.1]	[0.0075]	[0.3989]
125-6	4.92	7.68	2.76	2.17	0.37	3.35	1.42	3.86	17.2	57.40	5.699
	[125]	[195]	[70]	[55]	[9.5]	[85]	[36]	[98]	[7.8]	[0.0168]	[0.6439]
140-6	5.51	8.82	2.95	2.44	0.41	3.94	1.61	4.13	26.5	109.0	9.588
	[140]	[224]	[75]	[62]	[10.5]	[100]	[41]	[105]	[12.0]	[0.0319]	[1.0833]
160-6	6.30	10.24	3.54	2.76	0.51	4.72	1.97	4.72	38.2	210.9	15.302
	[160]	[260]	[90]	[70]	[13.0]	[120]	[50]	[120]	[17.3]	[0.0617]	[1.7289]
185-6	7.28	12.80	4.13	3.54	0.55	5.71	2.32	5.51	62.6	447.3	23.785
	[185]	[325]	[105]	[90]	[14.0]	[145]	[59]	[140]	[28.4]	[0.1309]	[2.6874]
205-6	8.07	13.39	4.72	3.74	0.59	5.91	2.44	6.30	82.6	770.2	33.261
	[205]	[340]	[120]	[95]	[15.0]	[150]	[62]	[160]	[37.5]	[0.2254]	[3.7580]

Contact us: sales@reichusa.com

HNS-8 DISC COUPLING

Technical Data

Size	Nominal Torque		Maximum Torque		Short Tor	Circuit que	M Ax	ax Misali kial	ignmer Pai	it* allel	Max Speed
	Nm Ib-in		Nm	lb-in	Nm	lb-in	± mm	± in	mm	in	RPM
215-8	9000	79657	13500	119485	27000	238970	3.4	0.134	0.74	0.029	8800
245-8	16500	146037	24750	219056	49500	438112	3.8	0.150	0.82	0.032	7800
275-8	23000	203567	34500	305351	69000	610702	4.4	0.173	0.92	0.036	7000
305-8	30000	265523	45000	398284	90000	796568	5.0	0.197	1.01	0.040	6200
345-8	43500	385008	65250	577511	130500	1155023	5.6	0.220	1.08	0.043	5500
375-8	59500	526620	89250	789929	178500	1579859	6.0	0.236	1.22	0.048	5000
410-8	78500	694784	117750	1042176	235500	2084352	6.4	0.252	1.31	0.052	4600
445-8	96500	854097	144750	1281146	289500	2562292	7.0	0.276	1.46	0.058	4300
475-8	123000	1088642	184500	1632963	369000	3265927	7.4	0.291	1.50	0.059	4000
520-8	152000	1345314	228000	2017971	456000	4035942	8.2	0.323	1.53	0.060	3600

*Maximum angular misalignment = 0° 30'

Coupling Selection

8-BOLT COUPLING WITH SPACER

NOTES:

- 1) Weight, inertia, maximum speed are calculated with steel hubs, standard dimensions, with max bore "dmax", and hub maximum "M"
- 2) Torsional stiffness is given between hub flanges for standard dimensions (spacer, element blades, bolts, adaptors, etc.)

Other hub and length dimensions available upon request.

Dimensional Data

0.	D	L	d max	L1	L2	L3	S	М	Wt	Inertia	Torsional stiffness
Size	In	ln	In	In	ln	In	In	In	Lb	Lb-in ²	Lb-in/rad *10 ⁶
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kg]	[kg-m ²]	[Nm/rad *10 ⁶]
215-8	8.46	12.80	3.94	3.94	4.92	3.74	0.59	5.51	60	542.6	52.88
	[215]	[325]	[100]	[100]	[125]	[95]	[15]	[140]	[27]	[0.1588]	[5.9749]
245-8	9.65	14.57	4.33	4.33	5.91	4.41	0.75	5.98	90	1062.3	79.75
	[245]	[370]	[110]	[110]	[150]	[112]	[19]	[152]	[41]	[0.3109]	[9.011]
275-8	10.83	15.94	4.92	4.72	6.50	4.92	0.79	6.89	127	1895	127.19
	[275]	[405]	[125]	[120]	[165]	[125]	[20]	[175]	[57.5]	[0.5546]	[14.37]
305-8	12.01	18.31	5.51	5.51	7.28	5.43	0.93	7.60	229	4196	157.09
	[305]	[465]	[140]	[140]	[185]	[138]	[23.5]	[193]	[104]	[1.228]	[17.749]
345-8	13.58	19.88	6.10	5.91	8.07	6.10	0.98	8.43	273	6291	235.3
	[345]	[505]	[155]	[150]	[205]	[155]	[25]	[214]	[124]	[1.8411]	[26.583]
375-8	14.76	22.24	6.69	6.69	8.86	6.73	1.06	9.25	331	9139	312.9
	[375]	[565]	[170]	[170]	[225]	[171]	[27]	[235]	[150]	[2.6747]	[35.351]
410-8	16.14	23.62	7.28	7.09	9.45	7.09	1.18	10.04	410	13523	397.4
	[410]	[600]	[185]	[180]	[240]	[180]	[30]	[255]	[186]	[3.9576]	[44.901]
445-8	17.52	25.98	7.68	7.48	11.02	8.19	1.42	10.63	534	20888	474.6
	[445]	[660]	[195]	[190]	[280]	[208]	[36]	[270]	[242]	[6.1133]	[53.619]
475-8	18.70	27.95	8.27	8.27	11.42	8.58	1.42	11.42	650	28858	583.2
	[475]	[710]	[210]	[210]	[290]	[218]	[36]	[290]	[295]	[8.4456]	[65.897]
520-8	20.47	29.92	9.06	9.06	11.81	8.98	1.42	12.60	829	43767	772.8
	[520]	[760]	[230]	[230]	[300]	[228]	[36]	[320]	[376]	[12.809]	[87.309]

www.reichusa.com

Contact us: sales@reichusa.com

HNS-8-AH DISC COUPLING

Technical Data

	Non	ninal	Maximum		Short	Circuit	М	it*	Max		
Size	Torque		Torque		Tor	que	Ах	ial	Par	allel	Speed
	Nm	lb-in	Nm	lb-in	Nm	lb-in	± mm	± in	mm	in	RPM
215-8	9000	79657	13500	119485	27000	238970	3.4	0.134	0.74	0.029	8800
245-8	16500	146037	24750	219056	49500	438112	3.8	0.150	0.82	0.032	7800
275-8	23000	203567	34500	305351	69000	610702	4.4	0.173	0.92	0.036	7000
305-8	30000	265523	45000	398284	90000	796568	5.0	0.197	1.01	0.040	6200
345-8	43500	385008	65250	577511	130500	1155023	5.6	0.220	1.08	0.043	5500
375-8	59500	526620	89250	789929	178500	1579859	6.0	0.236	1.22	0.048	5000
410-8	78500	694784	117750	1042176	235500	2084352	6.4	0.252	1.31	0.052	4600
445-8	96500	854097	144750	1281146	289500	2562292	7.0	0.276	1.46	0.058	4300
475-8	123000	1088642	184500	1632963	369000	3265927	7.4	0.291	1.50	0.059	4000
520-8	152000	1345314	228000	2017971	456000	4035942	8.2	0.323	1.53	0.060	3600

*Maximum angular misalignment = 0° 30'

Coupling Selection

8-BOLT COUPLING WITH DROPOUT SPACER

NOTES:

- 1) Weight, inertia, maximum speed are calculated with steel hubs, standard dimensions, with max bore "dmax", and hub maximum "M"
- 2) Torsional stiffness is given between hub flanges for standard dimensions (spacer, element blades, bolts, adaptors, etc.)

Other hub and length dimensions available upon request.

Dimensional Data

Size	D	L	d max	L1	L2	L3	S	M	Wt	Inertia	Torsional stiffness
OIZE	In	ln	ln	ln	In	In	In	In	Lb	Lb-in ²	Lb-in/rad *10 ⁶
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kg]	[kg-m ²]	[Nm/rad *10 ⁶]
215-8	8.46	14.57	4.92	4.13	6.30	2.83	0.59	6.77	94	1027.1	57.05
	[215]	[370]	[125]	[105]	[160]	[72]	[15]	[172]	[42.6]	[0.3006]	[6.4453]
245-8	9.65	16.14	5.71	4.53	7.09	3.07	0.75	7.83	143	2003.3	101.32
	[245]	[410]	[145]	[115]	[180]	[78]	[19]	[199]	[65]	[0.5863]	[11.448]
275-8	10.83	18.50	6.50	5.31	7.87	3.46	0.79	9.02	200	3616	143.24
	[275]	[470]	[165]	[135]	[200]	[88]	[20]	[229]	[90.5]	[1.0584]	[16.184]
305-8	12.01	20.47	7.28	5.91	8.66	3.74	0.93	10.16	273	6128	182.79
	[305]	[520]	[185]	[150]	[220]	[95]	[23.5]	[258]	[124]	[1.7935]	[20.653]
345-8	13.58	22.83	8.27	6.69	9.45	4.02	0.98	11.50	317	9198	275.0
	[345]	[580]	[210]	[170]	[240]	[102]	[25]	[292]	[144]	[2.692]	[31.07]
375-8	14.76	25.20	9.06	7.28	10.63	4.57	1.06	12.60	522	17531	359.6
	[375]	[640]	[230]	[185]	[270]	[116]	[27]	[320]	[237]	[5.131]	[40.627]
410-8	16.14	27.17	9.84	7.87	11.42	4.88	1.18	13.70	675	26928	456.6
	[410]	[690]	[250]	[200]	[290]	[124]	[30]	[348]	[306]	[7.881]	[51.593]
445-8	17.52	29.92	10.43	8.46	12.99	5.35	1.42	14.41	873	40893	573.1
	[445]	[760]	[265]	[215]	[330]	[136]	[36]	[366]	[396]	[11.968]	[64.756]
475-8	18.70	31.50	11.22	9.06	13.39	5.51	1.42	15.39	1155	60489	724.1
	[475]	[800]	[285]	[230]	[340]	[140]	[36]	[391]	[524]	[17.703]	[81.811]
520-8	20.47	33.46	12.40	9.84	13.78	5.67	1.42	17.17	1303	83317	932.2
	[520]	[850]	[315]	[250]	[350]	[144]	[36]	[436]	[591]	[24.384]	[105.33]

Contact us: sales@reichusa.com

www.reichusa.com

HNS-8-RH DISC COUPLING

Technical Data

	Nominal Torque		Maximum Torque		Short Tor	Circuit que	1	Max Misa	lignment	*	Max Speed
Size							AX	lai	Para		
	Nm	lb-in	Nm	lb-in	Nm	lb-in	± mm	± in	mm	in	RPM
120-8	1200	1200	1800	15931	3600	31863	2.0	0.079	0.42	0.017	13000
150-8	2300	2300	3450	30535	6900	61070	2.4	0.094	0.46	0.018	10000
185-8	4300	4300	6450	57087	12900	114175	3.2	0.126	0.60	0.023	8800
215-8	9000	9000	13500	119485	27000	238970	3.4	0.134	0.71	0.028	7800
245-8	16500	16500	24750	219056	49500	438112	3.8	0.150	0.87	0.034	6500
275-8	23000	23000	34500	305351	69000	610702	4.4	0.173	1.05	0.041	5900
305-8	30000	30000	45000	398284	90000	796568	5.0	0.197	1.19	0.047	5300
345-8	43500	43500	65250	577511	130500	1155023	5.6	0.220	1.37	0.054	4800
375-8	59500	59500	89250	789929	178500	1579859	6.0	0.236	1.25	0.049	4300
410-8	78500	78500	117750	1042176	235500	2084352	6.4	0.252	1.43	0.056	4000
445-8	96500	96500	144750	1281146	289500	2562292	7.0	0.276	1.67	0.066	3600
475-8	123000	123000	184500	1632963	369000	3265927	7.4	0.291	1.90	0.075	3400
520-8	152000	152000	228000	2017971	456000	4035942	8.2	0.323	2.38	0.094	3100

*Maximum angular misalignment = 0° 30'

Coupling Selection

8-BOLT COUPLING WITH REVERSED HUBS

NOTES:

- 1) Weight, inertia, maximum speed are calculated with steel hubs, standard dimensions, with max bore "dmax", and hub maximum "M"
- 2) Torsional stiffness is given between hub flanges for standard dimensions (spacer, element blades, bolts, adaptors, etc.)

Other hub and length dimensions available upon request.

Dime	Dimensional Data													
Sizo	D	L	d max	L1	S	L2	L3	Μ	Wt	Inertia	Torsional stiffness			
0126	In	In	In	In	In	In	In	In	Lb	Lb-in ²	Lb-in/rad *10 ⁶			
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kg]	[kg-m ²]	[Nm/rad *10 ⁶]			
120-8	5.709	3.504	1.969	1.693	0.374	0.118	1.575	2.717	9	34.85	11.509			
	[145]	[89]	[50]	[43]	[9.5]	[3.0]	[40]	[69]	[4.3]	[0.0102]	[1.3003]			
150-8	7.283	4.055	2.559	1.969	0.413	0.118	1.732	3.543	19	109.0	23.842			
	[185]	[103]	[65]	[50]	[10.5]	[3.0]	[44]	[90]	[8.4]	[0.0319]	[2.6938]			
185-8	8.465	5.000	3.150	2.441	0.512	0.118	2.244	4.409	32	258.7	41.331			
	[215]	[127]	[80]	[62]	[13]	[3.0]	[57]	[112]	[14.5]	[0.0757]	[4.6698]			
215-8	9.685	6.181	3.543	2.992	0.591	0.197	2.717	4.961	54	578.8	81.258			
	[246]	[157]	[90]	[76]	[15]	[5.0]	[69]	[126]	[24.6]	[0.1694]	[9.1809]			
245-8	11.417	7.283	3.937	3.543	0.748	0.197	3.268	5.512	88	1239	147.10			
	[290]	[185]	[100]	[90]	[19]	[5.0]	[83]	[140]	[39.7]	[0.3626]	[16.620]			
275-8	12.598	8.504	4.528	4.134	0.787	0.236	4.094	6.339	122	2139	185.26			
	[320]	[216]	[115]	[105]	[20]	[6.0]	[104]	[161]	[55.5]	[0.6261]	[20.931]			
305-8	13.976	9.685	5.118	4.724	0.925	0.236	4.606	7.047	167	3617	248.23			
	[355]	[246]	[130]	[120]	[23.5]	[6.0]	[117]	[179]	[75.7]	[1.0586]	[28.046]			
345-8	15.551	10.945	5.709	5.315	0.984	0.315	5.354	7.992	236	6290	328.15			
	[395]	[278]	[145]	[135]	[25]	[8.0]	[136]	[203]	[107]	[1.8409]	[37.076]			
375-8	17.323	10.945	6.299	5.315	1.063	0.315	4.724	8.701	309	10245	497.84			
	[440]	[278]	[160]	[135]	[27]	[8.0]	[120]	[221]	[140]	[2.9984]	[56.248]			
410-8	18.701	12.126	6.693	5.906	1.181	0.315	5.433	9.370	392	15157	629.04			
	[475]	[308]	[170]	[150]	[30]	[8.0]	[138]	[238]	[178]	[4.4359]	[71.072]			
445-8	20.669	14.094	7.283	6.890	1.417	0.315	6.299	10.079	498	22598	819.08			
	[525]	[358]	[185]	[175]	[36]	[8.0]	[160]	[256]	[226]	[6.6135]	[92.544]			
475-8	21.850	15.276	7.874	7.480	1.417	0.315	7.402	10.827	648	33800	1018.4			
	[555]	[388]	[200]	[190]	[36]	[8.0]	[188]	[275]	[294]	[9.8922]	[115.06]			
520-8	23.622	17.717	8.661	8.661	1.417	0.394	9.606	11.969	829	50652	1021.3			
	[600]	[450]	[220]	[220]	[36]	[10]	[244]	[304]	[376]	[14.824]	[115.39]			

R-Flex Disc Couplings

THESE INSTRUCTIONS ARE FOR THE STANDARD SERIES COUPLINGS WITH NORMAL RUNNING CONDITIONS. SPECIAL COUPLING DESIGNS MAY HAVE DIFFERENT INSTRUCTIONS.

1. Attachment To The Shaft – BORE and KEYWAY

- A. Inspect the shaft, hub bores, and keyways to make sure that they are clean and free of burrs. Lightly oiling the shaft will make it easier to assemble the hub on the shaft.
- B. Place the hub on the shaft. Be sure to slide the hub far enough onto the shaft so the shaft end is even with the hub face. This should not be changed without consulting Reich USA Corporation.
- C. Standard hubs are supplied with a slight clearance fit. For hubs with interference fits, consult with Reich USA for proper assembly instructions. The use of torches or rosebuds is not recommended because this can cause high stresses and permanent distortions.
- D. Fit the key into the hub. If supplied with a set screw, turn the set screw until the top of the key is contacted in the hub.
- E. Follow the instructions for axial alignment and secure the second hub if needed following these installation steps.

2. Coupling Alignment

The life of the coupling is directly affected by the alignment accuracy between the two coupling halves. Careful initial alignment will permit the coupling to operate at full capacity and allow for some future operational misalignments (e.g. equipment settling). Keeping all three directions of misalignment (axial, angular and parallel (radial)) within the limits stated in installation instructions provided with each coupling will increase the coupling and equipment life.

The values in the Technical Data tables are for general use and can vary in specific cases. After having properly aligned the coupling, make sure that all the bolts and nuts are tightened to their proper torque. It is a good idea to check the torque after some hours of operation as well.

Axial Alignment

The allowable tolerance for axial misalignment will vary with the number of disc pack bolts. In general, fewer disc pack bolts will mean higher allowable misalignment capabilities. In order to ensure proper coupling operation and coupling life, it is recommended to not exceed the values stated on the installation instructions shipped with the coupling.

To perform the axial alignment:

- A. Bring the equipment into the best visual alignment possible.
- B. Position the hubs axially so that the distance between shaft ends is within the minimum and maximum dimensions L2 \pm Da or S \pm Da/2. See Figures 3 and 4, respectively, for reference.

For non-standard couplings, see instructions on the corresponding coupling drawing.

Figure 3 Double flex coupling alignment dimensions

General Assembly Instructions

Parallel (Radial) Alignment

Please note: Couplings with one disc pack have no parallel misalignment capability, so $\Delta p = 0$ for single disc pack couplings.

- 1. Initial parallel misalignment can be checked by using a straight-edge across the hub flanges (see Figure 5) to measure the approximate distance Δp . A more precise method is to use a dial indicator or laser system and measure the parallel off-set in at least two locations 90 degrees apart while rotating the hub (see Figure 6).
- 2. Adjust or shim the equipment to bring the indicator or laser reading within the maximum allowable parallel misalignment Δp per the values shown in the Technical Data tables for each coupling series.

Figure 5 Parallel misalignment measurement

CAUTION

All rotating power transmission products are potentially dangerous and must be properly guarded for the speeds and applications for which they were intended.

Angular Alignment

- With a dial indicator or laser system (see Figure 6) measure the angular misalignment by determining the parallelism of the coupling flange faces.
- 2. Dimension $\Delta \alpha$, as shown in Figures 3 and 4, should be measured in at least three points, equally spaced, to determine the maximum value for $\Delta \alpha$. This must not exceed the maximum allowable dimension stated in the Technical Detail tables for each coupling series.
- 3. Adjust or shim the equipment to bring either the indicator reading or the measured and calculated flange gap within the maximum allowable angular misalignment.

Figure 6 Coupling with dial indicator

The reproduction, distribution and utilization of this document as well as the communication of its contents to others without explicit authorization is prohibited. Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or design.

Reich USA Corporation

Mahwah, New Jersey, 07430 USA Phone +1 (201) 684-9400 FAX +1 (201) 684-9401 E-mail: sales@reichusa.com Website: www.reichusa.com

